

The bending moment => curvature of the beam

Curvature = 1/Rcurv

Elasticity => M = kappa Curvature = kappa / Rcurv

Power = M dRotation = M L dCurvature = kappa Curvature L dCurvature

Energy = integral over time (Power) = ½ kappa L curvature^2

x+dx

Χ

Integration across the



Elasticity

Hooke's law: Sigma = Y epsilon = Y curv y

Y is the elastic(Young's) modulus

M = int (Sigma y dS)

 $M = Y curv int (y^2 dS)$ 

I/S = ratio between momnt of inertia and cross section area

## Moment of inertia of the beam: I



 $I = \pi R^4/4$  $S = \pi R^2$ 

 $I/S = R^2/4$ 



 $I = \pi (Ro^4-Ri^4)/4$  $S = \pi (Ro^2-Ri^2)$ 

 $I/S = (Ro^2 + Ri^2)/4$ =  $R^2/2$ 



Beam in civil eng

## Thermodynamics

Probability of having the filament with energy E

$$P(E) = A \exp(-E/kT) = A \exp(-YI L/(2kT R^2))$$

$$YIL/(2kTR^2)$$

$$L/(2R^2) = dimension is 1/m$$