

Cross sections remain plane and perpendicular to the neutral axis

The bending moment => curvature of the beam
Curvature $=1 /$ Rcurv
Elasticity => M = kappa Curvature = kappa / Rcurv
Power $=\mathrm{M}$ dRotation $=\mathrm{M} \operatorname{L}$ dCurvature $=$ kappa Curvature L dCurvature

Energy = integral over time (Power) $=1 / 2$ kappa L curvature^2

Integration across the whole cross section S
Sigma_xx

$M=\operatorname{int}($ Sigma $y d S)$

$x+d x$

Hooke's law: Sigma $=$ Y epsilon $=\mathrm{Y}$ curv y
Y is the elastic(Young's) modulus

M = int (Sigma y dS)

$\mathrm{I} / \mathrm{S}=$ ratio between momnt of inertia and cross section area

Moment of inertia of the beam: I

$1=\pi R^{\wedge} 4 / 4$
$S=\pi R^{\wedge} 2$
$1 / S=R^{\wedge} 2 / 4$

$$
\begin{aligned}
& I=\pi\left(\mathrm{Ro}^{\wedge} 4-\mathrm{Ri}^{\wedge} 4\right) / 4 \\
& \mathrm{~S}=\pi\left(\mathrm{Ro}^{\wedge} 2-\mathrm{Ri}^{\wedge} 2\right)
\end{aligned}
$$

$$
I / S=\left(R o^{\wedge} 2+R i^{\wedge} 2\right) / 4
$$

$$
=R^{\wedge} 2 / 2
$$

Beam in civil eng

Thermodynamics

Probability of having the filament with energy E
$P(E)=A \exp (-E / k T)=A \exp \left(-Y I L /\left(2 k T R^{\wedge} 2\right)\right.$

YI L/(2kT R^2)

$\mathrm{YI} /(\mathrm{kT})=$ dimension is $\mathrm{m}=>$ persistence length
$\mathrm{L} /\left(2 \mathrm{R}^{\wedge} 2\right)=$ dimension is $1 / m$

persistence length of DNA?

$\mathrm{YI} /(\mathrm{kT})=>$ persistence length

$$
\begin{aligned}
& \mathrm{k}=1.38064852 \times 10^{-23} \\
& \mathrm{~T}=300 \\
& \mathrm{kT}=4 \times 10^{-21}
\end{aligned}
$$

$$
\mathrm{Y}=1 \mathrm{GPa}=10^{+9} \mathrm{~Pa}
$$

$$
\mathrm{YI}=0.2 \times 10^{-27}
$$

$$
1 / \mathrm{kT}=0.25 \times 10^{+21}
$$

persistence length
persistence length $=0.25 \times 10^{-6}=250 \mathrm{~nm}$
$=50 \mathrm{~nm}$


```
T = (pi-pc)Rc/2
2T/Rc = pi-pc
T = (po-pc)Rp/2
2T/Rp = po-pc
Law of Laplace inside the micropipette
\[
\begin{aligned}
& 2 \mathrm{~T} / \mathrm{Rc}=\mathrm{pi}-\mathrm{pc} \\
& \mathrm{~T}=(\mathrm{po}-\mathrm{pc}) \mathrm{Rp} / 2 \\
& 2 \mathrm{~T} / \mathrm{Rp}=\mathrm{po}-\mathrm{pc}
\end{aligned}
\]
Law of Laplace outside the micropipette
```

$2 T(1 / R c-1 / R p)=p i-p o$

