Passive properties:

Rheology of a living cell using uniaxial stretching



Uniaxial stretching

Flexible microplate

E 2 (“spring” of stiffness k)
Rigid microplate

Thoumine et Ott, J. Cell Sci. 110 p 2109 (1997)



Uniaxial stretching

Flexible microplate
(“spring” of stiffness k

Deflexion § J

Displacement D l

Rigid microplate

Force |F=K §

Thoumine et Ott, J. Cell Sci. 110 p 2109 (1997)



_ocal measurements, time domain
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Viscoelasticity, time domain

For a given stress input function o(t), we obtain the resulting strain function g(t)
in three steps:

1. Obtain an expression of the Laplace transform of the stress function g(s)
2. Form the algebraic product: g(s) = Y g(s)

3. Obtain the inverse Laplace transform of the result to yield the strain function
in the time domain.

o Laplace Transform
The Laplace transformation is very

convenient in viscoelasticity problems, 00 .
because it reduces differential equations F(s) = / f(t)e * dt
to algebraic ones 0



Laplace Transformations

Basic definition:

£r0 =T = [ feea
Fundamental properties:
Lleifi(t) + eafa(t)] = eaf1(s)er fals)

c P_aﬂ ~ sf(s)— £(07)

Some useful transform pairs:

f(t) | f(s)
u(t) | 1/s
1 ,n'!,fsn+1
e | 1/(s+a)
11—et)|1/s(s+a)
L_L(1-e)|1/s*(s+a)

Here u(t) is the Heaviside or unit step function, defined as

0, t<0
“m:{ £>0

The convolution integral:

crto-F3- | [ ru-ea@ae] ][ serat—ede



Viscoelasticity, time domain

ks ks
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Viscoelasticity, time domain

o @)

Find the solution of these problems



_ocal measurements, time domain
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Some characteristic times
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Very different behaviors




Local rheometry, frequency analysis

Creep and stress relaxation tests are convenient for studying material response at long times
(minutes to days), but less accurate at shorter times (seconds and less). Dynamic tests, in which
the stress (or strain) resulting from a sinusoidal strain (or stress) is measured, are often well-
suited for filling out the “short-time” range of polymer response. When a viscoelastic material
is subjected to a sinusoidally varying stress, a steady state will eventually be reached? in which
the resulting strain is also sinusoidal, having the same angular frequency but retarded in phase
by an angle §: this is analogous to the delayed strain observed in creep experiments. The strain
lags the stress by the phase angle 4. and this is true even if the strain rather than the stress is
the controlled variable,

shear
force g. £
transducer Y\
sample
linear plateb " ,
actuator S | A
| plate 1A NE
I v | I
> . . e LVDT O
( : : / >

g =& sin(wr)



Local rheometry, frequency analysis

If the origin along the time axis is selected to coincide with a time at which the strain passes
through its maximum, the strain and stress functions can be written as:

€ — €pcoswt

o = ogcos(wt + )

Using an algebraic maneuver common in the analysis of reactive electrical circuits and other
harmonic systems, it is convenient to write the stress function as a complex quantity o¢* whose
real part is in phase with the strain and whose imaginary part is 90° out of phase with it:

o* = ofcoswt + i) sinwt

Here i = +/—1 and the asterisk denotes a complex quantity as usual.



Local rheometry, frequency analysis

It can be useful to visualize the observable stress and strain as the projection on the real
axis of vectors rotating in the complex plane at a frequency w. If we capture their positions just
as the strain vector passes the real axis, the stress vector will be ahead of it by the phase angle
0 as seen in Fig. 7.

ot
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Local rheometry, frequency analysis

Figure 7 makes it easy to develop the relations between the various parameters in harmonic
relations:

tan d = ajj /o,
0% = 00 = \/(0h)* + (7)?

oh = opcosd
0

ol = opsind
0

We can use this complex form of the stress function to define two different dynamic moduli,
both being ratios of stress to strain as usual but having very different molecular interpretations
and macroscopic consequences. The first of these is the “real.” or “storage,” modulus, defined
as the ratio of the in-phase stress to the strain:

E' = ap/eo

The other is the “imaginary,” or “loss.” modulus, defined as the ratio of the out-of-phase stress
to the strain:

= JD/ED
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The terms “storage” and “loss” can be understood more readily by considering the mechanical work
done per loading cycle. The quantity [ de is the strain energy per unit volume (since ¢ = force/area
and € = distance/length). Integrating the in-phase and out-of-phase components separately:

de
W_jgade_faadt

2w 29 fw
= [ (o coswt)(—epw sinwit )dt + / (of sinwt)(—eqw sinwt )dt

= 0 —mogep

Note that the in-phase components produce no net work when integrated over a cycle, while the out-of-
phase components result in a net dissipation per cycle equal to:

Wiais = moj €0 = mopep sind

This should be interpreted to illustrate that the strain energy associated with the in-phase stress and
strain is reversible: i.e. that energy which is stored in the material during a loading cyvcle can be re-
covered without loss during unloading. Conversely, energy supplied to the material by the out-of-phase
components is converted irreversibly to heat.

The maximum energy stored by the in-phase components occurs at the quarter-cycle point, and this
maximum stored energy is:

/2w
Wt = f (og coswt)(—epw sin wt ) di
0

— IU’E— lﬂ'E cosd
= —5%¢ = —5%¢

The relative dissipation — the ratio of Wa;s /W4 — is then related to the phase angle by:

FVEH
W..

= 2mtand



Local rheometry, frequency analysis
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displacement

Fabry et al., Phys Rev Lett. 2001
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Uniaxial stretching

1. From uniaxial stretching to single cell rheometer

(oc=0ete=0)

0 |

3(t)

L)

Stress :

F(t
— Flexible plate(k) o'(t) — %
Rig)d plate F(t) =k.5(t)
Strain :
et) = O —LO

L(0)



e The strain response to an arbitrary stress history is
obtained from J(t) by superposition

e(t) = IJ(t—r)dc)' = IJ(I—T) (;—jdr



1. From uniaxial stretching to single cell rheometer

Uniaxial stretching (6 #0et & =0)

Stress :

5 ( t) . Flexible plate(k) o'(t) — ?
L(y F(t) =k.5(t)
’ l v Strain :
o= LO-LO)
L(0)

Stress-strain relationship

£(t) = J () (0) + TJ (t—t")o(t)dt’

o0 = Very difficult to determine J

Avoid convolution product < oscillations (G())
ou constant stress (¢ = 0)



1. From uniaxial stretching to single cell rheometer

Rheometer (6 =0)

&(t) =J(t)o(0)
At constant stress: measurement of | << mesurement of strain €

F=Kk.0

o

o =0 < § constant

o =10pm
O,03nN.um™ <k <15nN.pum™
300pN < F <1uN



Single cell rneometer

Desprat et al., Rev.Sci. Instrum. 77, 055111-1 (2006)
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Single cell rneometer

Desprat et al., Rev.Sci. Instrum. 77, 055111-1 (2006)




Creep experiment

. Piezo
Plezo

. =




Creep experiment

Piezo




Creep experiment

Increasing
displacement

D (t)

Force F =k & = cste




Creep experiment

Increasing
displacement

D (t)

Force F =k & = cste




Creep experiment

Increasing
displacement

D (t)

Force F =k & = cste

>  Cell stretching D(t) at constant force






Creep experiment

Plates treated with Glutaraldehyde, non specific adhesion



Creep experiment

4]
5 1
Force F,=k & =cst 5
L(t)—Lo
Strain e(t) =
() r P
o 00 o
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strain €

Comparison with simple mechanical models

No characteristic time

——y = 0.31032 * x(0.25668) R= 0.9997

0.1 T B

0.1 1 10
time (s)

100

strain €

_:-_

= = o S

LL]
1
y = m1*(1-m2*exp(-(m0/m3)))+..
Value Error
m1 0.63647| 0.0023809 | |
m2 0.55928| 0.0036739
m3 9.0841 0.15953
m4 | 0.0041108| 3.9603e-05
Chisq 0.067816 NA
: R 0.99803 NA
0.1 S Y R
0.1 1 10 100
time (s)



f(t) (Pa™)

« Universal« behavior

0.1,
i O  primary cultured macrophages
O Hela (epithelial cells)
N ¢ C2.7 (myoblast)
t  primary cultured fibroblast V+/+
0.01
o.om/
—
0,000t
1 1 10 100 1000
time (s)

cancer cells F9, J774 alveolar macrophages, A549 alveolar epithelial
cells, BEAS-2B of bronchi, human neutrophiles



Plate tip/basis position (um)

Viscoelastic modulus at small strains

i(wt+@)

g(w) =¢g,e

Time (s)

Power law behavior is consistent
Linearity at large strains

Desprat et al., Rev.Sci. Instrum. 77, 055111-1 (2006)

o(t) = 8. sin (wt)
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Derivations

The fundamental relation t IN . eI\ et
of linear viscoelasticity ~ €(t) =J(t)o(0) + j J(t-t)o(t)at
0

t
Then becomes £(t) = I(0)c(0) + [ I (t—t)o(0)£(t)dt
0
Laplace transform then yelds g(s) = co(0)J (E)
F(p) = L{f(t)} = [m e P (1) dt. [1-5s0(0)J (s)]

Assuming that J (t) = At® as measured in the creep regime, one finds

&[T+ a)o(0)A“]
#(0)= Z; r(l+na)

Thus, at high strains, deformation should well be described by a sum of integer
powers of the creep function J(t)



Local rheometry, frequency analysis
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Fabry et al., Phys Rev Lett. 2001
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No characteristic time
Elasticity and dissipation from same origin

Unique behavior preserved

AVERAGE'!

Soft glassy medium behavior

Out of balance

Structural disorder

Metastability

Effective temperature (glass transition)




Soft Glassy Material or ... Fractal Gel

AFM: L~30 nm a~0,20;G,~ 710 Pa (Alcaraz et al., Biophys J., 2003)

MTC; OT: L~3 um o~0,20;G,~3004a3000Pa (Fabry et al., Phys Rev E., 2003)
(Balland et al., E. Biophys. ]., 2005)

In agreement with measurements at the cellular scale L~30 um

(27)” cos(a Z)

J@t)=At* T G'(f)= 2 o

Al'(1+ a)
% G, = 660 Pa

Auto-similarity ?




Actine network:
- individual filaments
- bundles

- fibers
unevenly distributed in
the cell body
1 T
_2 13 T;

y —
e Ll S —

The actin network is modeled by an infinite series of nested elementary

viscoelastic units with a wide distribution p(t) relaxation times t




Distribution of response times
Balland et al., Phys.Rev.E 74, 021911 (2006)

Simple assumptions:

- N(d) number of units of size d
N(d) ~ d-a if self similar structure

- relaxation time linked to spatial scale: t ~ d°

Then  p(t) ~ 2 witha =1-a/b

p(t) ~ 1*2 in power law m—> creep function J(t) as well

dd < t T w2 t 1
—_— = expl——) = “““exp(——)d t
- Z o( Ti) !r p(——)dr oc

Agreement with experimental

so J(t) ~t¢ observations



Response of the system
Complete distribution

o 1110 | (dedized)

377 T [ (& [5) 0= T, t
A | | || .
(£ s I 73 =Ty i
m . Incomplete distribution:
gg’}‘géefi déizrl'b”m” | we randomly keep a
0 fraction s of the elements
6 1
O (Simulates the variability
|'\j from one cell to another)
U 1
N’
: 1
-
¢/  Set of incomplete
distributions 1
s=01 “f  dJ/do =A oo! dJ/d6 =A 0
oo = 0.20 o J(©0) = (A/a) 06

107 10*

Ln (6 =1/7,)



Dispersion of coefficients of the power law

J(6) = A 6
- Normal distribution of exponents o =
- Log-normale distribution of factors A * «
cf experimental results

0
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Soft Glassy Material or ...

Like foams, emulsion, sluries

Desordered medium with a great number of elements and out of equimibrium

Interaction between mesoscopic elements leads to

- large distributions of sizes and relaxation times:

no characteristic time scale
- specific relaxation processes :

non viscous dissipation

Parameter of control X (noise temperature)

- power law rheological behaviour, oo = x - 1



Possible origins of the power law behavior

foams, emulsions, pastes, slurries Partially polymerized gels
- Out of equilibrium - Fixed structure
- Permanent structural - Fractal dimension
rearrangement
Soft Glassy Materials (SGM) Materials at the « Sol-Gel » transition
Sollich, Phys. Rev. E (1998) Winter et al., J. of Rheology (1986)

4 4

Dynamic origin Structural origin



POLYMERIZATION OF ACTIN FILAMENTS

nucleation stretching

o 0 O 0 o O‘H‘Filaments actine-F /'e

®Co— & - WF’ ?
/o e N

Monomers actin-G — ATP
+ divalent cations

Etat d’équilibre I S

|

actine-F - ADP actine-F - ATP



treadmilling

Cc- (0,8uM)> C actine-G > Cc+ (0,1uM)
Extrémité - Extremite + o

A
"""""
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STRUCTURE OF ACTIN FILAMENTS
IN THE CELL

> &

"
domaine de liaison | myosine-|
alacine ©







